

Language Technology: Applications and Techniques

Robert Dale
Centre for Language Technology
Macquarie University
www.ics.mq.edu.au/~rdale

© Robert Dale 2000, 2004

Managing Expectations

From a real e-mail message posted to a mailing list:

I need to read a file and parse it and convert it to first order logic. I would thus need some kind of natural language parser/processor and since my ultimate aim is far more ambitious I would like to use an existing (but good) NLP.

I would truly appreciate any pointers to free LISP code that implements a natural language processor. I do know the basics of NLP but can't write the grammar now.

Aims of This Tutorial

- To provide a broad awareness of actual and potential Language Technology applications
- To provide a framework for thinking about LT applications in terms of the linguistic resources they need
- To provide an understanding of what's involved in building LT applications

© Robert Dale 2000, 2004

3

Outcomes

- By the end of this tutorial you should have:
 - -an understanding of what LT is
 - —an appreciation of the range of applications that LT enables
 - —an insight into the technologies used in LT applications
 - an ability to assess claims about the capabilities of LT applications
 - an awareness of the major vendors and suppliers in LT technologies

Tutorial Structure

- Part 1: Applications [2 hours], 9-11am
- Break [30 mins]
- Part 2: Techniques [1 hr 30 mins], 1130am-1pm

© Robert Dale 2000, 2004 5

Part 1: Applications

A Definition

 Language Technology involves the application of knowledge about human language in computer-based solutions

© Robert Dale 2000, 2004 7

Two Drivers for Language Technology

- The need for intelligent, habitable, natural interfaces:
 - -Telephony-based apps need voice capabilities
 - -Nobody wants a keyboard on their intelligent microwave
- The problem of information overload
 - -There's too much stuff on the web
 - -There's too much stuff in the filing cabinet
 - -Nobody has time to read all their email

Related Terms

- Natural Language Processing
- Computational Linguistics
- Speech Technology
- Language Engineering
- Intelligent Text Processing
- Document Processing
- Artificial Intelligence
- Cognitive Science

© Robert Dale 2000, 2004

Two Dimensions

- Speech versus Text
- Input versus Output

Principal Components in a Language Technology Application

- Language input
 - recognizing
- Language processing
 - -reasoning
- Language output
 - —rendering

© Robert Dale 2000, 2004

Applications of Language Technology: Language Input

- Speech Recognition
- Optical Character Recognition
- Handwriting Recognition

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- Search and Information Retrieval
- Question-answering Systems

© Robert Dale 2000, 2004

Applications of Language Technology: Language Output

- Text-to-Speech
- Tailored Document Generation
- Dynamic Web Pages

Applications of Language Technology: Language Input

- Speech Recognition
- Optical Character Recognition
- Handwriting Recognition

© Robert Dale 2000, 2004 15

Speech Recognition: Key Focus and Applications

- Key Focus of the Technology
 - Deriving a textual representation of a spoken utterance
- Applications
 - Desktop command and control
 - Dictation
 - -Telephony-based transaction and information services

Speech Recognition: Fundamental Issues

- · Isolated word vs continuous speech
- Vocabulary size
- Speaker dependence vs speaker independence

© Robert Dale 2000, 2004

Speech Recognition: Current State of the Art

- Cheap PC desktop software available: virtually a commodity
- 60-90% accuracy depending on circumstances
- A number of major players in telephony-based systems

Speech Recognition: Current State of the Art

- Accuracy rates good enough for general dictation and simple transactions, but depends on speaker—your mileage may vary
- Ease of handling errors is important
- Recognition is not understanding!

© Robert Dale 2000, 2004

Speech Recognition: Fielded Products

Desktop:

- —IBM ViaVoice www.ibm.com/viavoice
- Dragon Naturally Speaking http://www.scansoft.com/naturallyspeaking

Speech Recognition: Fielded Applications

Telephony-based:

- Nuancewww.nuance.com
- —ScanSoft/SpeechWorks www.scansoft.com
- Philipswww.speech.philips.com

© Robert Dale 2000, 2004 21

Applications of Language Technology: Language Input

- Speech Recognition
- Optical Character Recognition
- Handwriting Recognition

Optical Character Recognition: Key Focus and Applications

- Key Focus of the Technology
 - Deriving a computer-readable representation of printed material
- Applications
 - -Scanning documents into ASCII form for electronic archival
 - Business card readers
 - -Web site construction from printed documents
 - Menu-translating pens!

© Robert Dale 2000, 2004 23

Optical Character Recognition: Fundamental Issues

- Two issues: character segmentation and character recognition
- Problems: unclean data, ambiguity, and new typefaces
- Special fonts aid accuracy (look at your cheque book)
- Many OCR systems use linguistic knowledge to correct recognition errors:
 - N-grams for word choice during processing
 - Spelling correction for post-processing

Optical Character Recognition: Current State of the Art

- 90% accuracy or better on clean text
- 100—200 characters per second ... as opposed to 3—4 characters per second for typing
- Market development depends on recognising not only characters, but also larger structural elements of documents
- Current apps include 'read-back' for proofreading
- US Postal Service research focuses on assigning ZIP Codes to letter images which may not contain any ZIP Code

© Robert Dale 2000, 2004 25

Optical Character Recognition: Fielded Products

- ScanSoft's OmniPage www.scansoft.com
- Xerox TextBridge www.scansoft.com
- ExperVision's TypeReader www.expervision.com

Applications of Language Technology: Language Input

- Speech Recognition
- Optical Character Recognition
- Handwriting Recognition

© Robert Dale 2000, 2004 27

Handwriting Recognition: Key Focus and Applications

- Key Focus of the Technology
 - Deriving a computer-readable representation of human handwriting
- Applications
 - -Forms processing
 - Mail routing
 - -PDAs

Handwriting Recognition: Fundamental Issues

- Everyone writes differently!
- · Isolated letters vs cursive script
- Better to train the user than to train the system?
 - Apple Newton vs Palm's Graffiti
- Many people can type faster than they can write
 - -So, handwriting appropriate where keyboards are not
- Need to integrate elaborate language models and writing style models

© Robert Dale 2000, 2004 29

Handwriting Recognition: Current State of the Art

- Generally based on neural network technology
- 5-6% error rate typical for isolated letters
- Good typists tolerate up to 1% error rate on keyboards that generate random errors
- Human subjects make 4—8% errors in isolated character reading, and 1.5% errors given context

Handwriting Recognition: Fielded Products

- Isolated letters
 - -Palm's Graffiti (www.palm.com)
 - Computer Intelligence Corporation's Jot (www.cic.com)
- Cursive Script
 - Advanced Recognition Technologies (www.artcomp.com)
 - Vision Objects (www.visionobjects.com)

© Robert Dale 2000, 2004 31

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- Search and Information Retrieval
- Question-answering Systems

Spoken Language Dialog Systems: Key Focus and Applications

- Key Focus of the Technology
 - Natural voice interactive dialogs with computer-based systems
 - Spoken dialogue systems communicate with users via automatic speech recognition and text-to-speech interfaces, and mediate the user's access to a back-end database
- Applications
 - Information services: stock quotes, timetables
 - -Transaction services: banking, betting, flight reservations

© Robert Dale 2000, 2004 33

Spoken Language Dialog Systems: Fundamental Issues

- Telephony-based systems cannot afford a training period
- Making a conversation too realistic falsely raises expectations
- · Error handling is a significant issue
- Giving dialog initiative to the user increases difficulty

Spoken Language Dialog Systems: Current State of the Art

- Commercial systems operational for limited transaction and information services
 - —QTAB betting service
 - American Airlines flight information system
 - Charles Schwab's stock broking system
- Very limited, finite-state notion of dialog
- Limited natural language understanding

© Robert Dale 2000, 2004 35

Spoken Language Dialog Systems: Fielded Applications

- Nuance (www.nuance.com)
- ScanSoft/SpeechWorks (www.scansoft.com)
- Philips (www.speech.philips.com)

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- Search and Information Retrieval
- Question-answering Systems

© Robert Dale 2000, 2004 37

Machine Translation: Key Focus and Applications

- Key Focus of the Technology
 - Deriving a version of a document in a language other than that used in the original document
- Applications
 - Desktop and web-based translation services
 - Spoken language translation services

Machine Translation: Bowne Global Solution's iTranslator

• Source English:

 With worldwide translation and documentation services, L&H can help you do business in any market around the globe. Our technology and top-line people enable you to communicate with employees and customers anywhere.

Translated into French . . .:

 Avec traduction mondiale et la documentation entretient, L&H peut vous aider à travailler dans tout marché autour du globe. Notre technologie et gens de la sommet-ligne vous permettent de communiquer n'importe où avec les employés et les clients.

... and back into English:

 With world translation and the documentation maintains, L&H can help you to work in all market around the globe. Our technology and people of the summit-line allow you to communicate where with the employees and the customers.

© Robert Dale 2000, 2004 39

Machine Translation: Systran's Web-Based Translator

Source English:

 With worldwide translation and documentation services, L&H can help you do business in any market around the globe. Our technology and top-line people enable you to communicate with employees and customers anywhere.

Translated into French . . .:

— Avec des services mondiaux de traduction et de documentation, L&H peut vous aider fait des affaires sur n'importe quel marché autour du globe. Notre technologie et dessus-ligne les gens vous permettent de communiquer avec des employés et des clients n'importe où.

... and back into English:

 With world services of translation and documentation, L&H can help you made deals on any market around the sphere. Our technology and top-line people enable you to communicate with employees and customers anywhere.

Machine Translation: Fundamental Issues

- The broad coverage required by mainstream translation technologies exacerbates ambiguity problems
- Effectively limited to literal language use
- Main approaches:
 - —Transfer
 - Interlingua
 - Example-based
- Real systems often Machine-<u>Assisted</u> Translation

© Robert Dale 2000, 2004 41

Machine Translation: Current State of the Art

- Broad coverage systems already available via the Web
- Fast turnaround, acceptable error rate for gisting
- Higher accuracy can be achieved by carefully domain-targetted systems
- Controlled languages such as Caterpillar English maximise likelihood of accurate translation

Machine Translation: Fielded Products

- Bowne Global Solution's iTranslator
 - -www.itranslator.com
- Systran—used by AltaVista
 - -www.systransoft.com

© Robert Dale 2000, 2004 43

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- Search and Information Retrieval
- Question-answering Systems

Text Summarisation: Key Focus and Applications

- Key Focus of the Technology
 - Producing a version of a document that is shorter than the original document
- Applications
 - Information browsing
 - -Voice delivery of web pages and email

© Robert Dale 2000, 2004 45

Text Summarisation: Fundamental Issues

- There are different kinds of summaries:
 - Informative vs indicative
- · Real summarisation requires real understanding
- Quality of 'knowledge-free' summarisation relies on aspects of the document other than content

Text Summarisation: Current State of the Art

- Commercial systems work on a 'sentence-extraction' model
- Sentences extracted on basis of
 - -location
 - -linguistic cues
 - statistical information
- Relatively knowledge-free but broad coverage as a result

© Robert Dale 2000, 2004 47

Text Summarisation: Fielded Applications

- CognIT's CORPORUM (www.cognit.com)
- InXight's Summarizer (www.inxight.com)
- MS Word's Summarisation Tool

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- Search and Information Retrieval
- Question-answering Systems

© Robert Dale 2000, 2004 49

Search and Information Retrieval: Key Focus and Applications

- Key Foci of the Technology
 - Concept-based search: moving beyond documents as bags of words
 - Named entity recognition
- Applications
 - -Intelligent web search
 - Improved document retrieval

Search and Information Retrieval: Fundamental Issues

- Major failure in IR systems: vocabulary mismatch
 - Information need is described using words other than those used in relevant documents
 - Solved by automatic expansion of the query
- Named Entities:
 - One person or organisation can be referred to by many name variants
 - Many persons or organizations can share the same name

© Robert Dale 2000, 2004 51

Search and Information Retrieval: Current State of the Art

- Thesaurus-based vocabulary expansion
- Limited linguistic analysis to determine phrases rather than words
- Predominantly rule-based Named Entity Recognition

Search and Information Retrieval: Fielded Applications

- Search and Information Retrieval
 - Ultra Find: www.ultradesign.com/ultrafind/ultrafind.html
 - Lotus Discovery Server:www.lotus.com/products/discserver.nsf
- Smart Text Processing Suites:
 - —Inxight: www.inxight.com
 - -Verity: www.verity.com

© Robert Dale 2000, 2004 53

Applications of Language Technology: Language Processing

- Spoken Language Dialog Systems
- Machine Translation
- Text Summarisation
- · Search and Information Retrieval
- Question-answering Systems

Question-Answering Systems: Key Focus and Applications

- Key Focus of the Technology
 - Given a natural language query, produce an appropriate response
- Applications
 - Web-based information services
 - Desktop help systems

© Robert Dale 2000, 2004 55

Question-Answering Systems: Fundamental Issues

- Limiting coverage to short questions provides some restriction on syntactic structure but leaves open vocabulary issues
- Real questions often contain presuppositions and contextual assumptions
 - -Where can I find my class timetable?

Question-Answering Systems: Current State of the Art

- Limited question analysis to determine query type and central queried concept
- IR techniques to return appropriate documents
- Data analysis to support construction of custom answers for common questions
- Current technology claimed capable of reducing call center expenses from \$75 a call to 18c a call

© Robert Dale 2000, 2004 57

Question-Answering Systems: Fielded Applications

- Ask Jeeves (www.askjeeves.com)
- iPhrase Technologies (www.iphrase.com)
- Native Minds' vReps (www.nativeminds.com) -- acquired by Verity

Soliloquy (www.soliloquy.com)

Applications of Language Technology: Language Output

- Text-to-Speech
- Tailored Document Generation

Text-to-Speech: Key Focus and Applications

- Key Focus of the Technology
 - -Production of natural sounding speech from a textual input
- Applications
 - -Spoken rendering of email via desktop and telephone
 - Document proofreading
 - Voice portals

© Robert Dale 2000, 2004 61

Text-to-Speech: Issues and State of the Art

- TTS in a vacuum requires reverse engineering of linguistic information
 - Appropriate use of intonation and phrasing
 - -Handling homophones
- High quality diphone concatenation is readily available:
 - Short digital-audio segments are concatenated, and intersegment smoothing performed to produce a continuous sound
 - Very appropriate where audio prerecording not usable

Text-to-Speech: Fielded Applications

- Rhetorical's rVoice (www.rhetorical.com)
- Cepstral (www.cepstral.com)

© Robert Dale 2000, 2004 63

Applications of Language Technology: Language Output

- Text-to-Speech
- Tailored Document Generation

Tailored Document Generation: Key Focus and Applications

- Key Focus of the Technology
 - Production of individually-tailored documents based on parameter values
- Applications
 - Individual, personalised advice-giving
 - -Customised personnel and policy manuals
 - -Web-delivered dynamic documents

© Robert Dale 2000, 2004 65

Tailored Document Generation: Issues and State of the Art

- Mail-merge is the bottom-end of this technology
- Tailored composition of document components and associated template filling can produce wide variations in output
- Going beyond mail-merge requires underlying knowledge source rich enough to drive sophisticated linguistic abilities
- Applications with complex underlying models such as project management software or CAD software can provide appropriate input

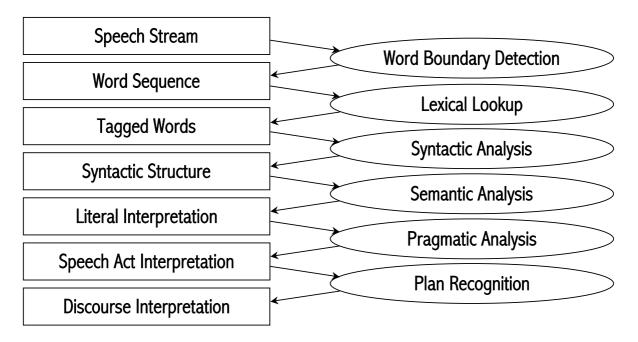
Tailored Document Generation: Fielded Applications

- KnowledgePoint (www.knowledgepoint.com)
 - Tailored job descriptions and personnel policies
 - -Automated performance review systems
- CoGenTex (www.cogentex.com)
 - Automatic generation of project status reports

© Robert Dale 2000, 2004 67

Summary So Far

- Input technologies can achieve in excess of 90% accuracy
- Broad coverage applications have to rely on limited linguistic knowledge
- Targetted applications can use more sophisticated linguistic knowledge
- Output technologies not yet a major focus


Part 2: Techniques

© Robert Dale 2000, 2004 69

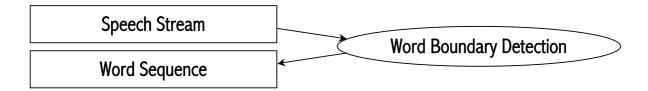
Overview

- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
- Conclusions and Further Information

Stages in Processing Language

© Robert Dale 2000, 2004 71

Word Boundary Detection


- recognise speech
- wreck a nice peach

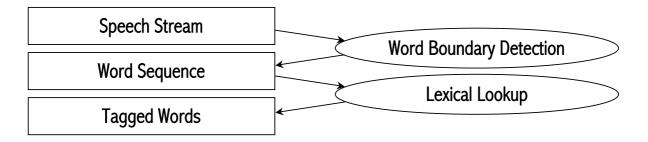
Word Boundary Detection

- A speech recognition system needs to recognise the <u>phonemes</u> that were spoken and then assemble these into valid sequences of words
- Different people pronounce phonemes in different ways: an <u>acoustic model</u> captures a representation of the possible renderings of phonemes that can be matched against
- A <u>language model</u> indicates what sequences of words are possible

© Robert Dale 2000, 2004 73

Stages in Processing Language

Lexical Ambiguity

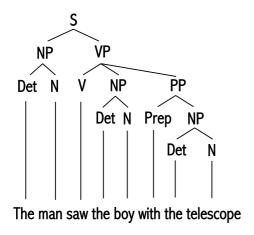

- The astronomer saw the star.
- The astronomer married the star.
- King Kong sat on the bank.

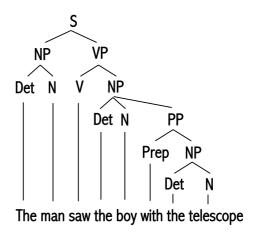
© Robert Dale 2000, 2004 75

Lexical Ambiguity

- Early methods were rule-based and relied on at least a partial understanding of the context
- Selectional restrictions in the lexicon:
 - -marry[agent=animate, object=animate]
 - -star₁[+animate] % famous or celebrated-person
 - -star₂[-animate] % celestial object
- Modern techniques rely on statistical evidence derived from large bodies of text

Stages in Processing Language


© Robert Dale 2000, 2004 77

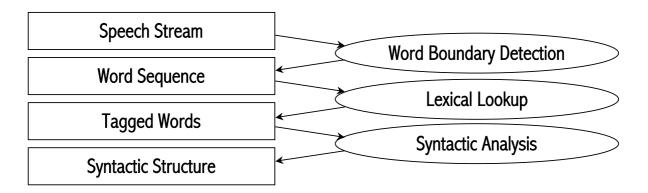

Structural Ambiguity

- The astronomer saw the star with a telescope.
- The astronomer married the star with a history.
- Visiting uncles can be a nuisance.
- I forgot how good beer tastes.

Structural Ambiguity

The man saw the boy with the telescope

© Robert Dale 2000, 2004 79


Structural Ambiguity

- A grammar inventorises the possible syntactic structures in a language by means of a fine set of rules
- These rules dictate how symbols in the language can be combined to create well-formed sentences

$$S \rightarrow NP VP$$
 $NP \rightarrow Det N$
 $VP \rightarrow V NP$

• A <u>parser</u> uses a set of grammar rules to attribute a syntactic structure to a well-formed string

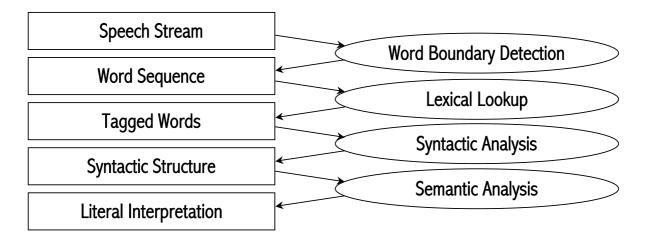
Stages in Processing Language

© Robert Dale 2000, 2004

Anaphora Resolution

- The councillors refused the women a permit because they feared revolution.
- The councillors refused the women a permit because they advocated revolution.

Anaphora Resolution


- The councillors refused the women a permit because they feared revolution.
 - refuse(e₁) \land agent(e₁,c₁) \land benefactor(e₁,w₁) \land object(e₁,p₁) \land fear(e₂) \land agent(e₂, c₁) \land object(e₂, r₁) \land cause(e₂, e₁)
- The councillors refused the women a permit because they advocated revolution.
 - refuse(e₁) \land agent(e₁,c₁) \land benefactor(e₁,w₁) \land object(e₁,p₁) \land advocate(e₂) \land agent(e₂,w₁) \land object(e₂, r₁) \land cause(e₂, e₁)

© Robert Dale 2000, 2004 83

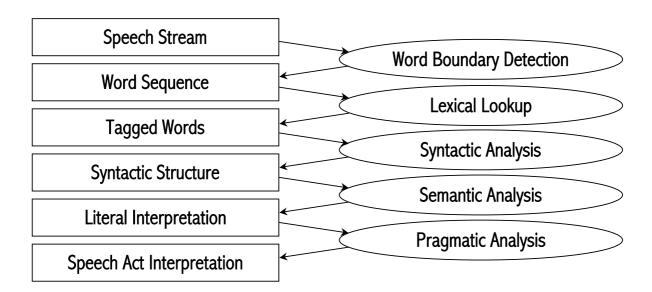
Anaphora Resolution

- Anaphora resolution is just one of a range of problems in semantic interpretation
- Anaphora resolution involves all kinds of linguistic knowledge: intonational, syntactic, semantic and pragmatic:
 - Maisy swore at Sabine then she insulted her.
 - -Jim hurt him.
 - —Andy put the cake on the table and ate it.
 - Sue went to Mary's house and she cooked her dinner.

Stages in Processing Language

© Robert Dale 2000, 2004 85

Non-literal Meaning


- Can you pass the salt?
- You're standing on my foot.
- His handwriting is very good.

Non-literal Meaning

- We always understand language in a context
- Our rich store of world knowledge allows us to draw the appropriate inferences to construct an appropriate interpretation
- Access to a similar store of world knowledge is a significant problem for computers
- As a result, successful applications of NLP lie in areas where we can closely constrain the context and therefore the range of possible interpretations

© Robert Dale 2000, 2004 87

Stages in Processing Language

Plan Recognition

Plan inference and co-operative response:

User: Which students got an F in Comp248 in 1993?

System: None.

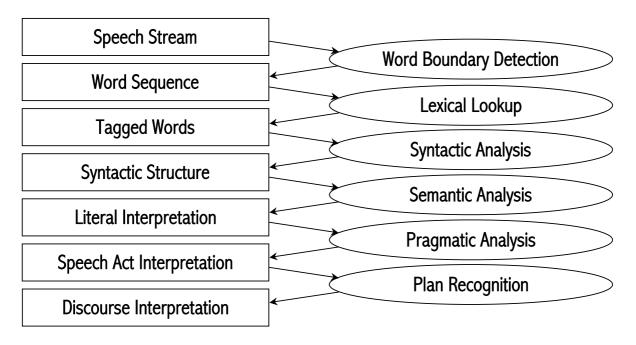
User: Did anyone fail Comp248 in 1993?

System: No.

User: How many people passed Comp248 in 1993?

System: Zero.

User: Was Comp248 given in 1993?


System: No.

© Robert Dale 2000, 2004 89

Plan Recognition

- When we take part in dialog, we are constantly making predictions as to what the other party in the dialog wants
- Research systems use complex inferences over assumed user beliefs and intentions
- Truly intelligent systems need to do the same thing
- Meaning results from the text and the context in combination

Stages in Processing Language

© Robert Dale 2000, 2004 91

Overview

- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
 - -Getting Language Into the Machine
 - -Lexical Knowledge
 - -Syntactic Knowledge
 - -Semantic and Pragmatic Knowledge
- Conclusions and Further Information

Getting Language into the Machine

- Speech Stream: segment into words, represent as a stream or lattice of space-separated word tokens
- Handwriting Recognition: recognise characters in cursive script, represent as space-separated word tokens
- Optical Character Recognition: recognise characters within page layout, combine into space-separated word tokens
- Existing Electronically Encoded Documents: strip out formatting commands and control characters, represent as space-separated word tokens

© Robert Dale 2000, 2004 93

Getting Language into the Machine

- Tokenisation:
 - the process of breaking up a sequence of characters in a text by locating the word boundaries
 - -the words thus identified are tokens
 - in languages where no word boundaries are explicitly marked in the writing system, also known as word segmentation

Getting Language into the Machine

- Sentence Segmentation
 - —the process of identifying sentence boundaries
 - involves sentence boundary detection, disambiguation or recognition

© Robert Dale 2000, 2004 95

Tokenisation and Sentence Segmentation

- The two tasks are not independent:
 - Maria finished her Ph.D. yesterday.
 - -Yesterday Maria finished her Ph.D.
- Real sentence boundary recognition is hard!
 - Two high-ranking positions were filled Friday by Penn St.
 University President Graham Spencer.
 - Two high-ranking positions were filled Friday by Penn St. University President Graham Spencer announced the appointments.

Overview

- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
 - -Getting Language Into the Machine
 - -Lexical Knowledge
 - Syntactic Knowledge
 - -Semantic and Pragmatic Knowledge
- Conclusions and Further Information

© Robert Dale 2000, 2004 97

Word Lists

- The minimal linguistic resource required for many applications: a list of the words in the language
 - -Generally required for spell checking and correction
 - Can reduce error rates in OCR and handwriting recognition
- Spell checking can also be carried out using lists of valid character bigrams or trigrams—but this isn't enough for correction

Word Lists

- Existing IR and Text Summarisation systems can perform without word lists:
 - In simple IR, words are just strings of characters
 - In simple Text Summarisation, sentences are just sequences of words, which are strings of characters
- Benefit: absolutely broad coverage
- Cost: zero leverage of linguistic information

© Robert Dale 2000, 2004 99

Word Lists

- A typical desk dictionary contains around 50000—150000 entries
- In 44 million words of Associated Press newswire text collected over 10 months, there were 300000 different tokens
- How do you build a lexicon big enough to deal with real language?
- One possibility: make use of machine readable dictionaries
- A popular MRD: Longman's Dictionary of Contemporary English

Word Lists

- How many words do you need? It has been suggested that by age 17 we know 80000 words.
- But: it has been estimated that 8000 base forms of words (morphemes) is sufficient to handle 95% of texts
- Typically, 15 most frequent words account for 25% of tokens
- 100 most frequent words account for 60% of tokens

© Robert Dale 2000, 2004

Word Frequencies

Rank	Spoken English	Written English	French	German
1	the	the	de	der
2	and	of	le	die
3	I	to	la	und
4	to	in	et	in
5	of	and	les	des
6	а	а	des	den
7	you	for	est	zu
8	that	was	un	das
9	in	is	ure	von
10	it	that	du	fur

Dictionaries

- A dictionary (or <u>lexicon</u>) is a collection of words with associated information:
 - A mapping to phonetic transcriptions is required for speech recognition
 - A mapping to parts of speech is required for almost all language technology applications that do anything with the words once recognised

© Robert Dale 2000, 2004 103

Dictionaries: Phonetic

- The Roman alphabet has 26 characters, but English has around 44 distinct phonemes
- Phonetic transcription traditionally notated using IPA, the International Phonetic Alphabet, but more recent encodings are computer-readable

ði ıntə'næfənəl fə'netık əsovsi'eısn

Dictionaries: Part of Speech

- Every word has a Syntactic Category or Part of Speech
- Parts of speech are important because they constrain how sentences can be put together
- Two broad types: Open Class words vs Closed Class words
- This information is needed for syntactic analysis
- Problem: dealing with unknown words

© Robert Dale 2000, 2004 105

Dictionaries: Part of Speech

- Nouns
 - projector, money, infidelity, amazement, antidisestablishmentarianism . . .
- Verbs
 - -run, fly, walk, procrastinate, believe ...
- Adjectives
 - crazy, green, hungry, unbelievable, amazed, smart ...
- Adverbs
 - —slowly, hungrily, unbelievably ...

Dictionaries: Part of Speech

- Determiners
 - -a, the, this, that, these, those ...
- Conjunctions
 - —and, but, therefore, because ...
- Prepositions
 - -in, on, under, between, to, from ...

© Robert Dale 2000, 2004 107

Morphology and the Dictionary

- Listing information on every word in the language separately fails to observe that there are systematic relationships between words
- We can save space by recognising the morphological structure of words, and constructing them from their component parts by rule
- Morphological processing can help in providing Part of Speech information for unknown words

Inflectional Morphology

- Root Form + Affix; affix can be a Prefix, Infix or Suffix
- Part of speech remains constant; same basic meaning
- Examples:
 - deliver + s = delivers [third person singular present tense]
 - deliver + ing = delivering [present participle]
 - deliver + ed = delivered [past tense]
- · Root form also known as the Base, Stem, or Lemma
- Root forms are <u>Free Morphemes</u>
- Affixes are usually **Bound Morphemes**

© Robert Dale 2000, 2004 109

Derivational Morphology

- A word of one category is used to derive a word of another category
- friend [noun] + ly [suffix] = friendly [adjective]
- friendly [adjective] + ness [suffix] = friendliness [noun]

Stemming

 Many IR systems use a linguistically under-motivated but simpler process called <u>stemming</u> to conflate words with a common base

© Robert Dale 2000, 2004

Overview

- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
 - -Getting Language Into the Machine
 - -Lexical Knowledge
 - -Syntactic Knowledge
 - -Semantic and Pragmatic Knowledge
- Conclusions and Further Information

Building Syntactic Representations

- A significant proportion of the work in traditional NLP has focused on syntactic analysis
 - sophisticated linguistic formalisms for capturing generalisations
 - efficient parsing techniques for broad coverage syntactic analysis

© Robert Dale 2000, 2004

Applications of Syntactic Analysis

- · Rich analysis generally required for
 - -Grammar checking
 - -Transfer-based and Interlingua-based Machine Translation

Applications of Syntactic Analysis

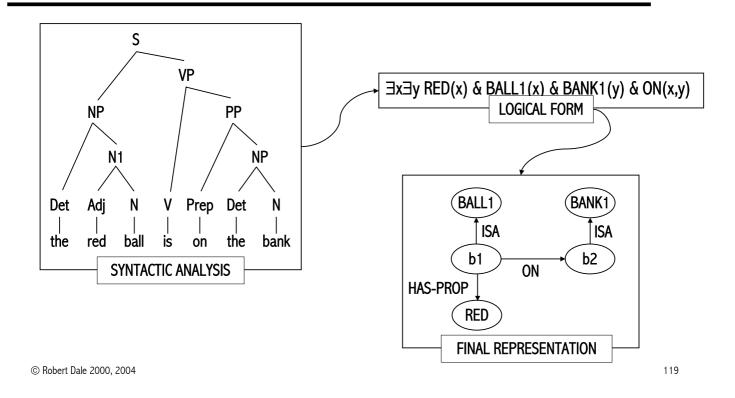
- Limited syntactic coverage required for:
 - -Spoken-language dialog systems
 - Question-answering systems

© Robert Dale 2000, 2004 115

Applications of Syntactic Analysis

- Shallower techniques based on finite state grammars sufficient for
 - Concept-based information retrieval
 - Information extraction technologies

Overview


- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
 - -Getting Language Into the Machine
 - -Lexical Knowledge
 - -Syntactic Knowledge
 - -Semantic and Pragmatic Knowledge
- Conclusions and Further Information

© Robert Dale 2000, 2004 117

Semantics as Logical Form

- Typically expressed using First Order Predicate Calculus:
 - -variables
 - predicates
 - -logical connectives
 - —quantifiers
- Other forms of logic required to express possibility, necessity, temporal phenomena ...

From Syntax to Semantics

From Syntax to Semantics

The red ball is on the bank.

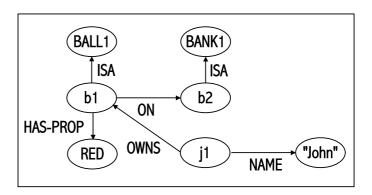
∃x∃y RED(x) & BALL1(x) & BANK1(y) & ON(x,y)

BALL1

SA

ISA

DISA


DISA

HAS-PROP

RED

It belongs to John.

 $\exists x \exists y \text{ NAME}(x, John) \& OWNS(x,y)$

How Do We Get From Syntax to Semantics?

- Meaning is <u>compositional</u>: the meaning of a constituent is derived solely from the meanings of its subconstituents and their means of combination
- An elegant approach: the lambda calculus
- Each lexical entry expresses the meaning of the word as a lambda expression; the rules of the grammar indicate how these expressions are to be combined
- The lack of a language-wide analysis in these terms makes the approach currently impractical

© Robert Dale 2000, 2004 121

Case Frames

- If we ignore quantificational phenomena, most significant aspect of meaning is 'who did what to whom'
- Semantically, each verb carries a set of case roles that specify the semantic relationships corresponding to the different participants in the event described:
 - AGENT
 - PATIENT
 - INSTRUMENT
 - SOURCE
 - DESTINATION

– ...

Case Roles and Case Frames

We can introduce events as logical variables:

The astronomer saw the star with a telescope

∃e∃x∃y∃z SEE(e) & PAST(e) & ASTRONOMER(x) & STAR1(y) & TELESCOPE(z) & AGENT(e,x) & PATIENT(e,y) & INSTRUMENT(e,z)

The astronomer married the star with a birthmark

∃e∃x∃y∃z MARRY(e) & PAST(e) & ASTRONOMER(x) & STAR2(y) & BIRTHMARK(z) & AGENT(e,x) & PATIENT(e,y) & POSSESS(y,z)

© Robert Dale 2000, 2004 123

A Feature Structure Representation

```
index: e1
       pred:
sem:
               see
       time:
               < now
                               index: a1
               agent:
       args:
                               sem:
                                       ASTRONOMER
               patient:
                               index:
                                       s1
                               sem:
                                       STAR1
                               index: t1
               instrument:
                               sem:
                                       TELESCOPE
```

Semantic and Pragmatic Knowledge

- From a theoretical perspective, semantics and pragmatics are distinct
- In practical systems, pragmatic issues are often 'compiled-down' into semantics, or even into the syntax
- For practical applications this is valid because of the limited coverage required

© Robert Dale 2000, 2004 125

A Grammar Rule in a Dialog System

• Semantics compiled into syntax:

```
balance-request →
    ([what is | what's | my | the |] balance [please]) |
    ([tell me the | check my] balance [please])
    <request=balance>
```

Interlingua Mappings in Machine Translation

- Representations similar to case frames serve as interlingua: a level of representation that embodies the basic concepts in a language-independent form
- Pragmatics? Some options
 - -Pragmatics compiled into semantics
 - Pragmatics as a free lunch
 - -Treat special cases separately

© Robert Dale 2000, 2004 127

Overview

- Traditional NLP Issues and Techniques
- How The Techniques Map to Applications
- · Conclusions and Further Information

Technology Map: Spoken Language Dialog Systems

- Limited grammatical coverage: simple syntax, effectively represented by means of semantic grammars
- Rich phonetically-annotated lexica for speech recognition and synthesis
- Hard-wired, implicit pragmatics

© Robert Dale 2000, 2004 129

Technology Map: Machine Translation

- Large lexica
- Rich syntactic analysis
- For transfer-based systems, structural and lexical mapping rules; limited semantic constraints
- For interlingua-based systems, some level of semantic analysis

Technology Map: Text Summarisation

- Current commercial systems use virtually no knowledge of language, other than extraction rules based on specific linguistic cues
- Interesting research direction: combination of information extraction technology with natural language generation

© Robert Dale 2000, 2004 131

Technology Map: Query Systems

- Existing systems use combination of linguistic knowledge of question forms + finite state grammars
- Answers found by information retrieval with some minimal NLP
- Quality results come from string matching to hand-crafted answers for frequent questions

Finding Out More: Comprehensive Texts

- R Dale, H Moisl and H Somers (eds) [2000] Handbook of Natural Language Processing. Marcel Dekker Inc.
- D Jurafsky and J Martin [2000] Speech and Language Processing. Prentice-Hall.
- R Cole, A Zaenen and A Zampolli (eds) [1998] Survey of the State of the Art in Human Language Technology. Cambridge University Press.

© Robert Dale 2000, 2004

Finding Out More: On the Web

- HLT Central (www.hltcentral.org)
- LT World (www.lt-world.org)

Finding Out More: Industry Magazines

- Speech Technology (www.speechtechmag.com)
- PC AI (www.pcai.com)
- Multilingual Computing (www.multilingual.com)
- LT Update (www.clt.mq.edu.au/ltupdate)

© Robert Dale 2000, 2004 135

Finding Out More: Research Journals

- Computational Linguistics
- Natural Language Engineering
- Machine Translation
- Speech Communication
- Computer Speech and Language

Finding Out More: Professional Associations

- Association for Computational Linguistics
 - -www.aclweb.org
- European Association for Machine Translation
 - -www.eamt.org
- Association for Machine Translation in the Americas
 - www.isi.edu/natural-language/organizations/AMTA.html
- European Speech Communication Association
 - -www.esca-speech.org/home.html

© Robert Dale 2000, 2004 137

Finding Out More: Research Conferences

- Association for Computational Linguistics
- COLING: International Conference on Computational Linguistics
- International Conference on Spoken Language Processing
- EuroSpeech
- MT Summit

Finding Out More: Mailing Lists

- Corpora (www.hd.uib.no/corpora)
- MT-List (www.eamt.org/mt-list)
- The Linguist List (http://linguistlist.org)
- Cmp-Lg [research archive] (http://arxiv.org/archive/cs/intro.html)

© Robert Dale 2000, 2004 139

Follow-up Comments and Questions

- Please email rdale@ics.mq.edu.au
- Thanks for coming!